Geometry -B				
Cycle	Unit	Unit Description	TEKS	Week \#
			(S) GEOM.8F Use conversions between measurement systems to solve problems in real-world situations.	Week 18 Friday
			(S) GEOM.11A Use and extend similarity properties and transformations to explore and justify conjectures about geometric figures including identification of corresponding parts of similar figures.	Week 20: Friday
			(S) GEOM.11B Apply ratios to solve problems involving similar figures.	Week 19 Friday
			R GEOM.11C Develop, apply, and justify triangle similarity relationships, such as mean proportional within triangles, trigonometric ratios, Pythagorean triples, and 45-45-90 and 30-60-90 triangles, using a variety of methods.	WK 18
			(S) GEOM.1B Recognize the historical development of geometric systems and know mathematics is developed for a variety of purposes.	Review
			(S) GEOM.3B Construct and justify statements about geometric figures including triangles, quadrilaterals, regular polygons, and circles, and their properties.	Review
			® GEOM.5D Identify and apply patterns from right triangles to solve meaningful problems, including special right triangles (45-45-90 and 30-60-90) and triangles whose sides are Pythagorean triples.	Review
			R GEOM. 8 C Derive, extend, and use the Pythagorean theorem to determine a missing side of a given right triangle and to solve real world problems.	Review
Cycle 4: Jan 6 - Feb 13			R GEOM.5D Identify and apply patterns from right triangles to solve meaningful problems, including special right triangles (30- 60-90ㅇ and 450-450-90) and triangles whose sides are Pythagorean triples.	Week 19
			® GEOM.11C Develop, apply, and justify triangle similarity relationships, such as mean proportional within triangles, trigonometric ratios, Pythagorean triples, and $30-60-90$ - and $450-450-90$, using a variety of methods.	Week 19

Cycle	Unit	Unit Description	TEKS	Week \#
			® GEOM.8A Determine areas of regular polygons, circles, and composite figures using the area of triangles, squares, rectangles, parallelograms, and/or trapezoids.	P.O.W (WK20)
			(S) GEOM.8E Use area models to connect geometry to probability and statistics.	$\begin{aligned} & \hline \text { P.O.W } \\ & \text { (WK20) } \end{aligned}$
			(S) GEOM. 8 F Use conversions between measurement systems to solve problems in real-world situations.	$\begin{aligned} & \hline \text { P.O.W } \\ & \text { (WK20) } \end{aligned}$
			® GEOM.11D Describe the effect on perimeter, area, and volume when one or more dimensions of a figure are changed and apply this idea in solving problems.	Week 20
	Week 21: DLA Review and Week 22: DLA Test and data			
		Students build and draw three-dimensional figures, deconstruct themto draw a net, and calculate the total and lateral surface areas.	(S) GEOM.6A Describe and draw various three-dimensional figures and draw the intersection of a given plane with various three-dimensional geometric figures.	Week 23
			(S) GEOM.6B Draw and use nets to represent, construct, and deconstruct three- geometric figures.	Week 23
			(S) GEOM.6C Sketch and use orthographic and isometric views of threedimensional geometric figures to represent, construct, and deconstruct three-dimensional geometric figures and solve problems.	Week 24
			® GEOM.8D Determine surface areas and volumes of prisms, pyramids, spheres, cones, cylinders, and composites of these figures in problem situations using formulas and nets.	$\begin{gathered} \text { POW } \\ \text { (Week 23) } \end{gathered}$
			(S) GEOM.8F Use conversions between measurement systems to solve problems in real-world situations.	Week 18 Friday
			(S) GEOM.9D Analyze the characteristics of polyhedra and other threedimensional figures such as prisms, pyramids, cylinders, cones, and spheres, and their component parts (including vertices, edges, faces, and diagonals), based on explorations and concrete models.	$\begin{gathered} \text { POW } \\ \text { (Week 23) } \end{gathered}$
			® GEOM.11D Describe the effect on perimeter, area, and volume when one or more dimensions of a figure are changed and apply this idea in solving problems.	$\begin{gathered} \text { POW } \\ \text { (Week } 23 \text {) } \end{gathered}$

Cycle	Unit	Unit Description	TEKS	Week \#
			(S) GEOM.6B Draw and use nets to represent, construct, and deconstruct three- geometric figures.	Week 23
			(S) GEOM.6C Sketch and use orthographic and isometric views of threedimensional geometric figures to represent, construct, and deconstruct three-dimensional geometric figures and solve problems.	Week 24
			(R) GEOM.8D Determine surface areas and volumes of prisms, pyramids, spheres, cones, cylinders, and composites of these figures in problem situations using formulas and nets.	POW (Week 23)
			(S) GEOM.8F Use conversions between measurement systems to solve problems in real-world situations.	Review
			(R GEOM.11D Describe the effect on perimeter, area, and volume when one or more dimensions of a figure are changed and apply this idea in solving problems.	POW (Week 23)
	Week 25: Review week and Week 26 : Snapshot, Data week and review			
			® GEOM.8A Determine areas of regular polygons, circles, and composite figures using the area of triangles, squares, rectangles, parallelograms, and/or trapezoids.	Review
			(S) GEOM.8B Determine areas of sectors and arc lengths of circles using proportional reasoning.	Week 27
			(S) GEOM.8E Use area models to connect geometry to probability and statistics.	Review

Cycle	Unit	Unit Description	TEKS	Week \#
			(S GEOM.1C Compare and contrast the structures and implications of Euclidean and non-Euclidean geometries by determining that some Euclidean definitions and theorems are not valid in non-Euclidean geometries.	Review
			® GEOM.2B Make conjectures about angles, lines, polygons, circles, and three-dimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic.	Review
			(S) GEOM.3B Construct and justify statements about geometric figures including triangles, quadrilaterals, regular polygons, and circles, and their properties.	Review
			® GEOM.3C Use logical reasoning and several methods of proof (flow proofs, transformation proofs, coordinate proofs, and two-column proofs) to prove statements are true, and find counter- examples to disprove statements that are false.	Review
			(S) GEOM.8B Determine areas of sectors and arc lengths of circles using proportional reasoning.	Review
			(S) GEOM.9C Formulate and test conjectures about the properties and attributes of circles, including segments within circles and the lines that intersect the circles, based on explorations and concrete models.	Week 28
	Week 29: Review and Week 30: Snapshot 6 and data			
			(S) ALGII.2A Use and apply tools including factoring and properties of exponents to simplify expressions and to transform and solve equations and inequalities.	Week 31
			® ALGII.6A Determine the reasonable domain and range values of a quadratic function represented by a table of values, graph, function rule, or a contextual situation, as well as interpret and determine the reasonableness of solutions to quadratic equations and inequalities.	week 32
			® ALGII.6B Relate representations of quadratic functions, such as algebraic, tabular, graphical, and verbal forms.	Week 33
			(S) ALGII.6C Determine a quadratic function from its roots (real and complex) or a graph.	Week 34
			(S) ALGII.8B Analyze and interpret the solutions of quadratic equations using discriminants and solve quadratic equations using the quadratic formula.	Week 34
Week 35 and 36: Final exam Review Weeks (Final exam will have 40 Problems)				
Week 37: Final Exam==> 25\% (10 Pr) TEKS from Geometry A. 20\% (8 Pr)TEKS from DLA and Snapshots				

